Recrystallization of Triple Superphosphate Produced from Oyster Shell Waste for Agronomic Performance and Environmental Issues

Author:

Seesanong Somkiat,Seangarun Chaowared,Boonchom Banjong,Sronsri Chuchai,Laohavisuti Nongnuch,Chaiseeda Kittichai,Boonmee Wimonmat

Abstract

Calcium dihydrogen phosphate monohydrate (Ca(H2PO4)2·H2O) (a fertilizer) was successfully synthesized through a recrystallization process using prepared triple superphosphate (TSP) derived from oyster shell waste as the starting material. This bio-green, eco-friendly process to produce an important fertilizer can promote a sustainable society. The shell-waste-derived TSP was dissolved in distilled water and kept at 30, 50, and 80 °C. Non-soluble powder and TSP solution were obtained. The TSP solution fractions were then dried, and the recrystallized products (RCP30, RCP50, and RCP80) were obtained and confirmed as Ca(H2PO4)2·H2O. Conversely, the non-soluble products (NSP30, NSP50, and NSP80) were observed as calcium hydrogen phosphate dihydrate (CaHPO4·2H2O). The recrystallized yields of RCP30, RCP50, and RCP80 were found to be 51.0%, 49.6%, and 46.3%, whereas the soluble percentages were 98.72%, 99.16%, and 96.63%, respectively. RCP30 shows different morphological plate sizes, while RCP50 and RCP80 present the coagulate crystal plates. X-ray diffractograms confirmed the formation of both the NSP and RCP. The infrared adsorption spectra confirmed the vibrational characteristics of HPO42−, H2PO4−, and H2O existed in CaHPO4·2H2O and Ca(H2PO4)2·H2O. Three thermal dehydration steps of Ca(H2PO4)2·H2O (physisorbed water, polycondensation, and re-polycondensation) were observed. Ca(H2PO4)2 and CaH2P2O7 are the thermodecomposed products from the first and second steps, whereas the final product is CaP2O6.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference35 articles.

1. The morphology and thermal behavior of Calcium dihydrogen phosphate monohydrate (Ca(H2PO4)2·H2O) obtained by a rapid precipitation route at ambient temperature in different media;Boonchom;J. Optoelectron. Biomed. Mater.,2009

2. Monographs in oral science;LeGeros,1991

3. Obtaining Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication

4. Hydrothermally-grown monetite (CaHPO4) on hydroxyapatite

5. Fertilizers in Aquaculture;Green,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3