Influence of Current Duty Cycle and Voltage of Micro-Arc Oxidation on the Microstructure and Composition of Calcium Phosphate Coating

Author:

Mamaeva Axaule1ORCID,Kenzhegulov Aidar1ORCID,Panichkin Aleksander1,Abdulvaliyev Rinat1ORCID,Fischer Dametken1,Bakhytuly Nauryzbek1,Toiynbaeva Nazgul2

Affiliation:

1. The Institute of Metallurgy and Ore Beneficiation, JSC, Satbayev University, NJSC, Almaty 050013, Kazakhstan

2. Faculty of Engineering and Information Technology, JSC, Almaty Technological University, Almaty 050012, Kazakhstan

Abstract

The micro-arc oxidation (MAO) technique was employed to produce calcium phosphate coatings on titanium surfaces using an electrolyte composed of hydroxyapatite and calcium carbonate in an aqueous solution of orthophosphoric acid. The coatings’ morphology and composition were regulated by adjusting electrical parameters, specifically the duty cycle and voltage. This study examined the effects of the duty cycle and voltage during the MAO process on the microstructure and composition of calcium phosphate coatings on VT1–0 titanium substrates. Scanning electron microscopy (SEM) was utilized to analyze the microstructure and thickness of the coatings, while X-ray diffraction (XRD) was employed to determine their phase composition. The findings reveal that the surface morphology of the calcium phosphate coatings transitions from a porous, sponge-like structure to flower-like formations as the duty cycle and voltage increase. A linear increase in the voltage within the applied duty cycles led to a rise in the size of the forming particles of amorphous/crystalline structures containing phases of monetite (CaPO3(OH)), monocalcium phosphate monohydrate (Ca(H2PO4)2·H2O), and calcium pyrophosphate (γ–Ca2P2O7).

Funder

Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan within Program-Targeted Funding

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3