Application of Deep Learning for Speckle Removal in GOCI Chlorophyll-a Concentration Images (2012–2017)

Author:

Park Ji-EunORCID,Park Kyung-AeORCID

Abstract

The detection and removal of erroneous pixels is a critical pre-processing step in producing chlorophyll-a (chl-a) concentration values to adequately understand the bio-physical oceanic process using optical satellite data. Geostationary Ocean Color Imager (GOCI) chl-a images revealed that numerous speckle noises with enormously high and low values were randomly scattered throughout the seas around the Korean Peninsula as well as in the Northwest Pacific. Most of the previous methods used to remove abnormal chl-a concentrations have focused on inhomogeneity in spatial features, which still frequently produce problematic values. Herein, a scheme was developed to detect and eliminate chl-a speckles as well as erroneous pixels near the boundary of clouds; for the purpose, a deep neural network (DNN) algorithm was applied to a large-sized GOCI database from the 6-year period of 2012–2017. The input data of the proposed DNN model were composed of the GOCI level-2 remote-sensing reflectance of each band, chl-a concentration image, median filtered, and monthly climatology chl-a image. The quality of the individual images as well as the monthly composites of chl-a data was improved remarkably after the DNN speckle-removal procedure. The quantitative analyses showed that the DNN algorithm achieved high classification accuracy with regard to the detection of error pixels with both very high and very low chl-a values, and better performance compared to the general arithmetic algorithms of the median filter and threshold scheme. This implies that the implemented method can be useful for investigating not only the short-term variations based on hourly chl-a data but also long-term variabilities with composite products of the GOCI chl-a concentration over the span of a decade.

Funder

Deep Water Circulation and Material Cycling in the East Sea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3