Quantitative Retrieval of Chlorophyll-a Concentrations in the Bohai–Yellow Sea Using GOCI Surface Reflectance Products

Author:

Wang Jiru1,Tang Jiakui12ORCID,Wang Wuhua1ORCID,Wang Yanjiao1ORCID,Wang Zhao1

Affiliation:

1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

2. Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

As an environmental parameter, the chlorophyll-a concentration (Chl-a) is essential for monitoring water quality and managing the marine ecosystem. However, current mainstream Chl-a inversion algorithms have limited accuracy and poor spatial and temporal generalization in Case II waters. In this study, we constructed a quantitative model for retrieving the spatial and temporal distribution of Chl-a in the Bohai–Yellow Sea area using Geostationary Ocean Color Imager (GOCI) spectral remote sensing reflectance (Rrsλ) products. Firstly, the GOCI Rrsλ correction model based on measured spectral data was proposed and evaluated. Then, the feature variables of the band combinations with the highest correlation with Chl-a were selected. Subsequently, Chl-a inversion models were developed using three empirical ocean color algorithms (OC4, OC5, and YOC) and four machine learning methods: BP neural network (BPNN), random forest (RF), AdaBoost, and support vector regression (SVR). The retrieval results showed that the machine learning methods were much more accurate than the empirical algorithms and that the RF model retrieved Chl-a with the best performance and the highest prediction accuracy, with a determination coefficient R2 of 0.916, a root mean square error (RMSE) of 0.212 mg·m−3, and a mean absolute percentage error (MAPE) of 14.27%. Finally, the Chl-a distribution in the Bohai–Yellow Sea using the selected RF model was derived and analyzed. Spatially, Chl-a was high in the Bohai Sea, including in Laizhou Bay, Bohai Bay, and Liaodong Bay, with a value higher than 4 mg·m−3. Chl-a in the Bohai Strait and northern Yellow Sea was relatively low, with a value of less than 3 mg·m−3. Temporally, the inversion results showed that Chl-a was considerably higher in winter and spring compared to autumn and summer. Diurnal variation retrieval effectively demonstrated GOCI’s potential as a capable tool for monitoring intraday changes in chlorophyll-a concentrations.

Funder

Science and Technology Fundamental Resources Investigation Program

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3