Integration of Metabolomics and Transcriptomicsto Comprehensively Evaluate the Metabolic Effects of Gelsemium elegans on Pigs

Author:

Huang Chong-Yin,Yang Kun,Cao Jun-Jie,Wang Zi-Yuan,Wu Yong,Sun Zhi-Liang,Liu Zhao-YingORCID

Abstract

Some naturalphytogenic feed additives, which contain several active compounds, have been shown to be effective alternatives to traditional antibiotics. Gelsemium elegans (G. elegans) is a whole grass in the family Loganiaceae. It is a known toxic plant widely distributed in China and has been used as a traditional Chinese herbal medicine for many years to treat neuropathic pain, rheumatoid pain, inflammation, skin ulcers, and cancer. However, G. elegans not only is nontoxic to animals such as pigs and sheep but also has an obvious growth-promoting effect. To our knowledge, the internal mechanism of the influence of G. elegans on the animal body is still unclear. The goal of this work is to evaluate the metabolic consequences of feeding piglets G. elegans for 45 days based on the combination of transcriptomics and metabolomics. According to growth measurement and evaluation, compared with piglets fed a complete diet, adding 20 g/kg G. elegans powder to the basal diet of piglets significantly reduced the feed conversion ratio. Results of the liver transcriptome suggest that glycine and cysteine-related regulatory pathways, including the MAPK signaling pathway and the mTOR signaling pathway, were extensively altered in G. elegans-induced piglets. Plasma metabolomics identified 21 and 18 differential metabolites (p < 0.05) in the plasma of piglets in the positive and negative ion modes, respectively, between G. elegans exposure and complete diet groups. The concentrations of glycine and its derivatives and N-acetylcysteine were higher in the G. elegans exposure group than in the complete diet group.This study demonstrated that G. elegans could be an alternative to antibiotics that improves the immune function of piglets, and the latent mechanism of G. elegans may be related to various signaling pathways, including the MAPK signaling pathway and the PPAR signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3