Replacing Alfalfa with Paper Mulberry in Total Mixed Ration Silages: Effects on Ensiling Characteristics, Protein Degradation, and In Vitro Digestibility

Author:

Li Rongrong,Zheng Mingli,Jiang Di,Tian Pengjiao,Zheng Menghu,Xu Chuncheng

Abstract

To develop an alternative high-protein forage resource to alleviate ruminant feed shortages, we investigated the effects of replacing alfalfa (Medicago sativa L.) with different ratios of paper mulberry (Broussonetia papyrifera L., RY) on fermentation quality, protein degradation, and in vitro digestibility of total mixed ration (TMR) silage. The TMR were made with alfalfa and RY mixtures (36.0%), maize meal (35.0%), oat grass (10.0%), soybean meal (7.5%), brewers’ grain (5.0%), wheat bran (5.0%), premix (1.0%), and salt (0.5%) on a dry matter basis, respectively. The alfalfa and RY mixtures were made in the following ratios of dry matter: 36:0 (RY0), 27:9 (RY9), 18:18 (RY18), 9:27 (RY27), and 0:36 (RY36). After ensiling for 7, 14, 28, and 56 days, fermentation quality, protein degradation, and microbial counts were examined, and chemical composition and in vitro digestibility were analyzed after 56 days of ensiling. All TMR silages, irrespective of the substitution level of RY, were well preserved with low pH and ammonia nitrogen content, high lactic acid content, and undetectable butyric acid. After ensiling, the condensed tannin content for RY18 silages was higher than the control, but non-protein nitrogen, peptide nitrogen, and free amino acid nitrogen contents was lower, while the fraction B1 (buffer-soluble protein) was not different among all the silages. Dry matter and crude protein digestibility for RY27 and RY36 silages was lower than the control, but there was no difference between control and RY18 silages. This study suggested that ensiling RY with alfalfa inhibited true protein degradation, but decreased in vitro dry matter and crude protein digestibility of TMR silages, and that 18:18 is the optimal ratio.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3