Study of Atomic Hydrogen Concentration in Grain Boundaries of Polycrystalline Diamond Thin Films

Author:

de Obaldía Elida I.ORCID,Alcantar-Peña Jesus J.ORCID,Wittel Frederick P.,Veyan Jean François,Gallardo-Hernadez SalvadorORCID,Koudriavtsev Yury,Berman-Mendoza Dainet,Auciello Orlando

Abstract

This paper describes research focused on investigating the effect of hydrogen (H) atom insertion into the grain boundaries of polycrystalline diamond (PCD) films. This is required in order to understand the key morphological, chemical, physical, and electronic properties of the films. The PCD films were grown using the hot filament chemical vapor deposition (HFCVD) process, with flowing Ar gas mixed with CH4 and H2 gases to control film growth into microcrystalline diamond (MCD, 0.5–3 µm grain sizes), nanocrystalline diamond (NCD, 10–500 nm grain sizes), and ultrananocrystalline diamond (UNCD, 2–5 nm grain sizes) films depending on the Ar/CH4/H2 flow ratios. This study focused on measuring the H atom concentration of the PCD films to determine the effect on the properties indicated above. A simple model is presented, including a hypothesis that the two dangling bonds per unit cell of C atoms serve as the site of hydrogen incorporation. This correlates well with the observed concentration of H atoms in the films. Dangling bonds which are not passivated by hydrogen are postulated to form surface structures which include C double bonds. The Raman peak from these surface structures are the same as observed for transpolyacetyline (TPA). The data reveal that the concentration of H atoms at the grain boundaries is around 1.5 × 1015 atoms/cm2 regardless of grain size. Electrical current measurements, using a conductive atomic force microscopy (CAFM) technique, were performed using an MCD film, showing that the current is concentrated at the grain boundaries. Ultraviolet photo electron spectroscopy (UPS) confirmed that all the PCD films exhibited a metallic behavior. This is to be expected if the nature of grain boundaries is the same regardless of grain size.

Funder

Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3