Abstract
The failure of a facility to produce a product can have significant impacts on the quality of the product. Most equipment failures occur in rotating equipment, with bearing damage being the biggest cause of failure in rotating equipment. In this paper, we propose a denoising autoencoder (DAE) and multi-scale convolution recurrent neural network (MS-CRNN), wherein the DAE accurately inspects bearing defects in the same environment as bearing vibration signals in the field, and the MS-CRNN inspects and classifies defects. We experimented with adding random noise to create a dataset that resembled noisy manufacturing installations in the field. From the results of the experiment, the accuracy of the proposed method was more than 90%, proving that it is an algorithm that can be applied in the field.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献