Research on Sintering Machine Axle Fault Detection Based on Wheel Swing Characteristics

Author:

Chen Bo1,Yang Husheng2,Mei Jiarui1,Wang Yueming1,Zhang Hao1

Affiliation:

1. School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

During the sintering process in iron production, wheel swing is a sign of sintering machine trolley axle faults, which may lead to the wheel falling off and affect the production operation of the sintering machine system in serious cases. To solve this problem, this paper proposes a fault detection and localization method based on the You Only Look Once version 9 (YOLOv9) object detection algorithm and frame difference method for detecting sintering machine trolley wheel swing. The wheel images transmitted from the camera were sent to a trolley wheel and side panel number detection model that was trained on YOLOv9 for recognition. The wheel recognition boxes of the previous and subsequent frames were fused into the wheel region of interest. In the wheel region of interest, the difference operation was carried out. The result of the difference operation was compared with the preset threshold to determine whether the trolley wheel swings. When a wheel swing fault occurs, the image of the side plate at the time of the fault is collected, and the number on the side plate is identified so as to accurately locate the faulty trolley and to assist the field personnel in troubleshooting the fault. The experimental results show that this method can detect wheel swing faults in the industrial field, and the detection accuracy of wheel swing faults was 93.33%. The trolley side plate numbers’ average precision was 99.2% in fault localization. Utilizing the aforementioned method to construct a system for detecting wheel swing can provide technical support for fault detection of the trolley axle on the sintering machine.

Funder

Science and Technology Program of the Inner Mongolia Autonomous Region

Research Program of Science and Technology at Universities of the Inner Mongolia Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3