Sound Environments in Large Public Buildings for Crowd Transit: A Systematic Review

Author:

Yang Tingting,Aletta FrancescoORCID,Kang JianORCID

Abstract

Sound environments in large public buildings are likely to be different from those of performance spaces, as well as those not specifically designed for acoustic “performance”, but where sounds still play an important role because of the function they can promote (or disrupt). The aim of this study was identifying common strategies and empirical approaches researchers have been implementing for these acoustically complex enclosures and to provide some methodological indications for future studies on the topic. Studies conducted in three building types for crowd transit, such as museums/exhibition spaces, shopping malls, and transportation hubs/stations, which were collecting data about either physical outcomes or individual responses for such sound environments, were selected. The Scopus databases were searched for peer-reviewed journal papers published in English without time limitations. An additional manual search was performed on the reference lists of the retrieved items. The general consideration on inclusion was to meet the requirement that the case belonged to the three building types, and then the specific inclusion criteria were: (1) including at least an objective acoustic measure of the space; or (2) including at least a subjective measure of the space. The search returned 1060 results; after removing duplicates, two authors screened titles and abstracts and selected 117 papers for further analysis. Twenty-six studies were eventually included. Due to the limited number of items and differences in measures across studies, a quantitative meta-analysis could not be performed, and a qualitative approach was adopted instead. The most commonly used objective measures were SPL, and more specifically often considered as LAeq, and T. The intervals across studies were currently of inconsistency, and the selection is recommended to take space scale factor into account. The used subjective measures can be classified into four categories as annoyance, affective quality, room-acoustic quality, and acoustic spatiality. Four basic perceptual assessments concerning dynamic contents are accordingly suggested as “annoying-not annoying”, “crowded-uncrowded”, “long-short (reverberation)”, and “far away-nearby”. The other descriptors can be project-specific. The methodologies involve measurement, questionnaire/interview, listening test, and software simulation. It is necessary for the former two to consider temporal and spatial features of such spaces, and the adoption of the latter two will lead to better understanding of users’ exposure in such spaces, e.g., acoustic sequences and user amount. The outputs of investigations inform that background noise level, e.g., 90 dB in museum/exhibition spaces, and sound reverberation, e.g., 4.0 to 5.0 s in shopping malls and transportation hubs/station, are of fundamental importance to the design of such spaces. Sufficient acoustic comfort can be achieved with integrated design of indoor soundscape.

Funder

H2020 European Research Council

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Using the standard on objective measures for concert auditoria, ISO 3382, to give reliable results

2. Room Acoust;Kuttruff,2000

3. On the variability or Room Acoust. Parameters: Reprod. and Stat. Validity;Pelorson;Appl. Sci.,1992

4. ISO 3382–1:2009 Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces,2009

5. ISO 3382-2:2008 Acoustics—Measurement of Room Acoustic Parameters—Part 2: Reverberation Time in Ordinary Rooms,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3