The Potential of Focusing Acoustic Retroreflectors for Architectural Surface Treatment

Author:

Cabrera Densil1ORCID,Lu Shuai12ORCID,Holmes Jonothan1ORCID,Yadav Manuj13ORCID

Affiliation:

1. Sydney School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW 2006, Australia

2. Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China

3. Institute for Hearing Technology and Acoustics, RWTH Aachen University, Kopernikusstr. 5, 52074 Aachen, Germany

Abstract

How much sound can a building surface reflect to a source, the location of which is not exactly known? This paper considers this question particularly for a planar surface acting as an array of retroreflectors, or of focusing retroreflectors. The question is investigated using finite-difference time-domain acoustic simulation, using ideal retroreflective patches achieved by space-reversal, and focusing achieved by delays. Extensive (7.2 × 7.2 m) and local (2.4 × 2.4 m) ideal planar reflector arrays were investigated at distances of 1.5 to 4 m from sources that were within a 2.4 × 2.4 m square plane. Patch sizes ranged from 0.3 m squares to the full reflector size. Physically realizable non-ideal focusing retroreflectors based on parabolic trihedra were also investigated. With sufficiently large patches, ideal focusing retroreflector arrays consistently outperform non-focusing retroreflector arrays. A large focusing retroreflector array has the potential to provide retroreflected energy levels (speech and A-weighted) from the first reflection to a source at 2 m distance comparable to the diffuse field energy level of acoustically supportive reverberant rooms. A small focusing retroreflector array returns less sound, but still much more than a single reflection from an equivalent specularly reflecting surface. Results from parabolic trihedra demonstrate that retroreflected energy levels similar to those from ideal surfaces can be achieved by architectural form. Challenges in translating these concepts to practical design solutions are discussed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference73 articles.

1. Acoustics for symphony orchestras; status after three decades of experimental research;Gade;Build. Acoust.,2011

2. Objective assessment of acoustic conditions for symphony orchestras;Dammerud;Build. Acoust.,2011

3. Chamber musicians’ acoustic impressions of auditorium stages: Relation to spatial distribution of early reflections and other parameters;Panton;J. Acoust. Soc. Am.,2019

4. (2009). Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces (Standard No. ISO 3382-1:2009).

5. Increase in voice level and speaker comfort in lecture rooms;Brunskog;J. Acoust. Soc. Am.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3