Abstract
The construction industry is facing increasing pressure to improve productivity and decrease its environmental impact. Additive manufacturing (AM) technologies, especially three-dimensional concrete printing (3DCP) technology, have provided many benefits for construction. However, holistic comparative studies of the competitiveness of 3DCP and conventional methods, from cost and time perspectives, are lacking. Choosing between the methods is difficult for practitioners. In this study, we investigated the current state of 3DCP in the construction industry using seven distinct scenarios. Our analysis was performed to illustrate the impact of design and supply chain configurations on performance. The results prove the notable competitiveness of 3DCP. In contrast to the conventional construction method, the more complex round design had a positive impact on the cost and process time in 3DCP scenarios. Additionally, we show that on-site 3DCP using a robotic arm was more cost-effective than off-site 3DCP.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献