The Effect of Cu (II) on Swelling and Shrinkage Characteristics of Sodium Bentonite in Landfills

Author:

Xiao Guiyuan,Xu Guangli,Wei Tongzhong,Zeng Jian,Liu Wenjun,Zhang LuORCID

Abstract

Wastes in municipal landfills will release heavy metal cations over a long period of time. Therefore, the objective of this paper was to investigate the effect of copper (Cu) in the leachate from landfill on the swell-shrinking potential of bentonite liner. Copper sulfate solution with 4 different groups of concentrations (0 g/L, 2.5 g/L, 5 g/L, 10 g/L) were added to bentonite for conducting a series of swelling and shrinkage experiments. Then the Does Response model was used to describe the swelling and shrinkage process of bentonite in different copper sulfate solutions and the applicability of the model was evaluated. At the same time, clay mineral analysis experiments (XRD and XRF) were carried out to analyze the variation of interlayer space and element content of montmorillonite. The results show that the swell volume of bentonite decreases with the increase of the concentration of Cu (II). The rate of swelling was high and inversely proportional to the concentration of Cu (II). The shrinkage curve of bentonite could be divided into uniform velocity stage, variable velocity stage, and stable stage. The shrinkage rate at the uniform velocity stage and shrinkage at the stable stage decreased with the increase of the concentration of Cu (II). The model was suitable for describing swelling (or shrinkage) curves with smaller expansibility (or shrinkage). Results of XRD and XRF show that the erosion of Cu (II) led to the decrease of Na+ content in sodium bentonite, and then narrowed interlayer space of montmorillonite. When the solution concentration increases, both values of interlayer space of montmorillonite and Na+ content in sodium bentonite become lower, and that led to swelling and shrinkage of bentonite liner was getting smaller and smaller.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3