Cultivating Microalgae in Desert Conditions: Evaluation of the Effect of Light-Temperature Summer Conditions on the Growth and Metabolism of Nannochloropsis QU130

Author:

Al Jabri Hareb,Taleb Aumaya,Touchard Raphaelle,Saadaoui Imen,Goetz Vincent,Pruvost JeremyORCID

Abstract

Temperature and light are two of the most crucial factors for microalgae production. Variations in these factors alter their growth kinetics, macromolecular composition and physiological properties, including cell membrane permeability and fluidity. The variations define the adaptation mechanisms adopted by the microalgae to withstand changes in these environmental factors. In the Qatar desert the temperature varies widely, typically between 10° and 45 °C There are also wide variations in light intensity, with values of over 1500 μmolhν.m−2s−1 in summer. A study of the effects of these thermal and light fluctuations is therefore essential for large-scale outdoor production systems, especially during the summer when temperature and light fluctuations are at their highest. The aim of this work is to study the impact of temperature and light intensity variations as encountered in summer period on the Nannochloropsis QU130 strain, which was selected for its suitability for outdoor cultivation in the harsh conditions of the Qatar desert. It was carried out using lab-scale photobioreactors enabling simulation of both constant and dynamic temperature and light regimes. Biomass productivity, cell morphology and biochemical compositions were examined first in constant conditions, then in typical outdoor cultivation conditions to elucidate the adjustments in cell function in respect of fluctuations. The dynamic light and temperature were shown to have interactive effects. The application of temperature cycles under constant light led to a 13.6% increase in biomass productivity, while a 45% decrease was observed under light and temperature regimes due to the combined stress. In all cases, the results proved that N. sp. QU130 has a high level of adaptation to the wide fluctuations in light and temperature stress. This was shown through its ability to easily change its physiology (cell size) and metabolic process in response to different cultivation conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3