Unmanned Aerial Traffic Management System Architecture for U-Space In-Flight Services

Author:

Capitán CarlosORCID,Pérez-León Héctor,Capitán JesúsORCID,Castaño ÁngelORCID,Ollero Aníbal

Abstract

This paper presents a software architecture for Unmanned aerial system Traffic Management (UTM). The work is framed within the U-space ecosystem, which is the European initiative for UTM in the civil airspace. We propose a system that focuses on providing the required services for automated decision-making during real-time threat management and conflict resolution, which is the main gap in current UTM solutions. Nonetheless, our software architecture follows an open-source design that is modular and flexible enough to accommodate additional U-space services in future developments. In its current implementation, our UTM solution is capable of tracking the aerial operations and monitoring the airspace in real time, in order to perform in-flight emergency management and tactical deconfliction. We show experimental results in order to demonstrate the UTM system working in a realistic simulation setup. For that, we performed our tests with the UTM system and the operators of the aerial aircraft located at remote locations with the consequent communication issues, and we showcased that the system was capable of managing in real time the conflicting events in two different use cases.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Engineering Fair and Equitable Software Systems for Managing Low-Altitude Airspace Authorizations;Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society;2024-04-14

2. Decentralized deconfliction of aerial robots in high intensity traffic structures;Journal of Field Robotics;2024-04-11

3. U-Space ConOps Implementation in Malaysia;J AERONAUT ASTRONAUT;2024

4. A survey of state-of-the-art U-space research;2024 10th International Conference on Automation, Robotics and Applications (ICARA);2024-02-22

5. Deep learning for unmanned aerial vehicles detection: A review;Computer Science Review;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3