Decentralized deconfliction of aerial robots in high intensity traffic structures

Author:

Crann Verdon1ORCID,Amiri Peyman1ORCID,Knox Samuel1ORCID,Crowther William1ORCID

Affiliation:

1. Department of Fluids and Environment The University of Manchester Manchester UK

Abstract

AbstractProjections for future air mobility envisage intensely utilized airspace that does not simply scale up from existing systems with centralized air traffic control. This paper considers the implementation and test of a software and hardware framework for decentralized control of aerial vehicles within intensely used airspace. Up to 10 rotary wing vehicles of maximum all up mass of are flown in an outdoor volume with length scale of with GPS and WiFi connectivity. Flight control is implemented using a Pixhawk 4 flight controller running the PX4 firmware with guidance algorithms run on a separate onboard companion computer. Deconfliction is implemented using a simple elastic repulsion model with a guidance update rate of . Traffic structures are constructed from a path of directed waypoints and associated cross sectional geometry. Junctions are implemented when two paths converge into one or when one path diverges into two. Agents engage with structures through execution of flow, merge and swirl velocity rules. Calibration experiments showed that the worst case latency in agents sharing position information was of the order of made up from delays due to finite guidance update rate, WiFi processing and centralized message processing. A choice of vehicle cruise speed of and conflict radius of provided an acceptable compromise between experiment time efficiency (speed) and spatial efficiency (resolution) within the test volume. Results from recirculating junction experiments show that peak deconfliction activity occurs at the junction node, however biased distribution of agents within a corridor means the peak intensity is pushed ahead of the node. Use of meshed helical junction structures significantly reduces the intensity of conflict at the expense of reduced junction time efficiency.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3