Abstract
Tribocorrosion behaviours of nickel (Ni) and niobium (Nb) in sodium sulfate (Na2SO4) solution under potentiodynamic and potentiostatic conditions were studied. Under the potentiodynamic condition, the passivation was early broken, accompanied by a sharp increase in frictional coefficient on Nb. The current was more fluctuant, and larger material loss appeared at the higher potential in the potentiostatic condition. However, these phenomena did not occur for Ni, and it even showed lower material loss at the higher potential in the potentiostatic tribocorrosion test. The differences in tribocorrosion behaviour had a close relationship to the passive film growth mechanism, which decided the passive film/metal interface structure. Nb with anionic diffusion dominated mechanism in passive growth would cause the accumulation of oxygen vacancies at the passive film/metal interface. This may weaken the adhesion between the metal and the passive film. However, with the cationic diffusion dominated passive film growth on Ni, cation vacancies concentrated at the passive film/tribo-film interface, and this did not affect the adhesion between metal and passive film. Ni or other passive elements with the cationic diffusion-dominated mechanism in passive film growth were recommended as the alloying element for improving the tribocorrosion resistance of alloys.
Funder
National Natural Science Foundation of China
Science and Technology Research Program of Chongqing Municipal Education Commission
Natural Science Foundation of Chongqing
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献