Impact-sliding fretting tribocorrosion behavior of 316L stainless steel in solution with different halide concentrations

Author:

Ma Xu,Tan Wei,Bonzom Remy,Mi Xue,Zhu Guorui

Abstract

AbstractImpact-sliding caused by random vibrations between tubes and supports can affect the operation of heat exchangers. In addition, a corrosive environment can cause damage, accelerating the synergism of corrosion and wear. Therefore, the focus of this work was the impact-sliding fretting tribocorrosion behavior of 316L heat exchanger tubes at different halide concentrations. A device system incorporating the in situ electrochemical measurements of impact-sliding fretting corrosion wear was constructed, and experiments on 316L heat exchanger tubes in sodium chloride (NaCl) solution with different concentrations (0.0, 0.1, 0.5, 1.0, 3.5, and 5.0 wt%) were carried out. The synergism between wear and corrosion was also calculated and analyzed. The wear and damage mechanisms were elucidated by correlating the corrosion-wear synergism, morphologies, and material loss rates. The results indicated that the stable wear stage occurred at approximately 9–12 h, after which the corrosion current increased with the expansion of the wear area. As the halide concentration increased, the scale of damage on the wear scars gradually decreased, changing from being dominated by cracks, delaminations, and grooves to being dominated by scratches, microgrooves, and holes. There was an obvious positive synergism between wear and corrosion. The material loss was dominated by pure mechanical wear and wear enhanced by corrosion, but corrosion enhanced by wear contributed more than tangential sliding fretting corrosion. The total mass loss increased gradually in the range of 0.0–0.5 wt% and decreased in the range of 0.5–5.0 wt%. Large-scale damage enhanced by corrosivity and small-scale damage reduced by lubricity dominated the material loss at low and high concentrations, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3