Affiliation:
1. Key Laboratory of Electronics and Information Technology for Space System, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
2. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Institute of Remote Sensing Equipment, Beijing 100190, China
Abstract
Anomaly detection of hyperspectral remote sensing data has recently become more attractive in hyperspectral image processing. The low-rank and sparse matrix decomposition-based anomaly detection algorithm (LRaSMD) exhibits poor detection performance in complex scenes with multiple background edges and noise. Therefore, this study proposes a weighted sparse hyperspectral anomaly detection method. First, using the idea of matrix decomposition in mathematics, the original hyperspectral data matrix is reconstructed into three sub-matrices with low rank, small sparsity and representing noise, respectively. Second, to suppress the noise interference in the complex background, we employed the low-rank, background image as a reference, built a local spectral and spatial dictionary through the sliding window strategy, reconstructed the HSI pixels of the original data, and extracted the sparse coefficient. We proposed the sparse coefficient divergence evaluation index (SCDI) as a weighting factor to weight the sparse anomaly map to obtain a significant anomaly map to suppress the background edge, noise, and other residues caused by decomposition, and enhance the abnormal target. Finally, abnormal pixels are segmented based on the adaptive threshold. The experimental results demonstrate that, on a real-scene hyperspectral dataset with a complicated background, the proposed method outperforms the existing representative algorithms in terms of detection performance.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献