Indication of Groundwater Contamination Using Acesulfame and Other Pollutants in a Rural Area of Korea

Author:

Lee Chung-Mo,Hamm Se-Yeong,Yun Sul-Min,Oh Jeong-Eun,Kim MoonSuORCID,Kim Hyun

Abstract

Approximately 40,000 chemical products are currently used in Korea; these products can contaminate the groundwater/soil, the surrounding environment, and organisms for extended periods of time. In this study, a hydrological field survey, a water quality analysis, and groundwater modeling were performed to identify the source and transport path of pollution that was caused by inorganic matter and artificial sweeteners, especially acesulfame, in the groundwater of an agricultural area in Chungnam Province, Korea. In the study area, a higher concentration of acesulfame displayed a spatial distribution similar to nitrate-nitrogen concentration. The characteristics of the groundwater flow and the distribution of the acesulfame were simulated using the Visual MODFLOW Classic Interface ver. 2014.1 and the MT3DMS module, respectively. The modeled area was divided into hilly (southern), residential (northwest), and agricultural (northeast) zones. The stream’s boundary was set to be the drainage channel in the southern hilly zone. From the simulation, we found that acesulfame spread actively from the source for 1–3 years before it reached equilibrium in the northern part of the model domain (the area downstream of the stream’s boundary). The concentration of acesulfame in the agricultural zone of the model domain decreased after five years, and it reached the steam boundary and residential zone within 10 years. After 10 years, most of the acesulfame was discharged from the agricultural zone and the hilly zone, while the concentration in the residential zone was approximately the same. Acesulfame is considered to be a potential indicator of man-made contamination for use in the management of groundwater quality.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3