Underwater Target Detection Based on Parallel High-Resolution Networks

Author:

Bao Zhengwei12,Guo Ying12,Wang Jiyu12,Zhu Linlin12,Huang Jun12,Yan Shu12

Affiliation:

1. College of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044, China

Abstract

A parallel high-resolution underwater target detection network is proposed to address the problems of complex underwater scenes and limited target feature extraction capability. First, a high-resolution network (HRNet), a lighter high-resolution human posture estimation network, is used to improve the target feature representation and effectively reduce the semantic information lost in the image during sampling. Then, the attention module (A-CBAM) is improved to capture complex feature distributions by modeling the two-dimensional space in the activation function stage through the introduction of the flexible rectified linear units (FReLU) activation function to achieve pixel-level spatial information modeling capability. Feature enhancement in the spatial and channel dimensions is performed to improve understanding of fuzzy targets and small target objects and to better capture irregular and detailed object layouts. Finally, a receptive field augmentation module (RFAM) is constructed to obtain sufficient semantic information and rich detail information to further enhance the robustness and discrimination of features and improve the detection capability of the model for multi-scale underwater targets. Experimental results show that the method achieves 81.17%, 77.02%, and 82.9% mean average precision (mAP) on three publicly available datasets, specifically underwater robot professional contest (URPC2020, URPC2018) and pattern analysis, statistical modeling, and computational learning visual object classes (PASCAL VOC2007), respectively, demonstrating the effectiveness of the proposed network.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3