A Soft Sensor Model for Predicting the Flow of a Hydraulic Pump Based on Graph Convolutional Network–Long Short-Term Memory

Author:

Ji Shengfei1ORCID,Li Wei1,Wang Yong1,Zhang Bo2ORCID,Ng See-Kiong3

Affiliation:

1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Computer Science & Technology, China University of Mining and Technology, Xuzhou 221116, China

3. Institute of Data Science, National University of Singapore, Singapore 117602, Singapore

Abstract

The hydraulic pump plays a pivotal role in engineering machinery, and it is essential to continuously monitor its operating status. However, many vital signals for monitoring cannot be directly obtained in practical applications. To address this, we propose a soft sensor approach for predicting the flow signal of the hydraulic pump based on a graph convolutional network (GCN) and long short-term memory (LSTM). Our innovative GCN-LSTM model is intricately designed to capture both spatial and temporal interdependencies inherent in complex machinery, such as hydraulic pumps. We used the GCN to extract spatial features and LSTM to extract temporal features of the process variables. To evaluate the performance of GCN-LSTM in predicting the flow of a hydraulic pump, we construct a real-world experimental dataset with an actual hydraulic shovel. We further evaluated GCN-LSTM on two public datasets, showing the effectiveness of GCN-LSTM for predicting the flow of hydraulic pumps and other complex engineering operations.

Funder

Fundamental Research Funds for the Central Universities of China University of Mining and Technology

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3