Diagnosis of Power Switch Faults in Three-Phase Permanent Magnet Synchronous Motors via Current-Signature Technique

Author:

Suti Aleksander1ORCID,Di Rito Gianpietro1ORCID

Affiliation:

1. Dipartimento di Ingegneria Civile ed Industriale, Università di Pisa, Largo Lucio Lazzarino 2, 56122 Pisa, Italy

Abstract

The paper deals with the development of a model-based current-signature algorithm for the detection and isolation of power switch faults in three-phase Permanent Magnet Synchronous Motors (PMSMs). The algorithm, by elaborating the motor currents feedbacks, reconstructs the current phasor trajectories in the Clarke plane through elliptical fittings, up to detecting and isolating the fault depending on the characteristics of the signature deviation from the nominal one. As a rough approximation, as typically proposed in the literature, the fault of one out of six power switches implies that, at constant speed operation, the phasor trajectory deviates from the nominal circular path up to a semi-circular “D-shape” signature, the inclination of which depends on the failed converter leg. However, this evolution can significantly deviate in practical cases, due to the dynamics related to the transition of motor phase connections from failed to active switches. The study demonstrates that an online ellipse fitting of the current signature can be effective for diagnosis, through correlating the ellipse centre to the location of the failed switch. The performances of the proposed monitoring technique are here assessed via the nonlinear simulation of a PMSM employed for the propulsion of a lightweight fixed-wing Unmanned Aerial Vehicle (UAV), by quantifying the fault latencies and the related transients.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3