Study on Stability Discrimination Technology of Stope Arch Structure

Author:

Li Quansheng,Zhang YanjunORCID,Zhao Yongqiang,Zhu Yuanhao,Yan YueguanORCID

Abstract

The stress of rock strata changes under mining action, and the arch structure will be formed around the mining area. The stability study of the arch structure has crucial scientific value for solving the problems of stope pressure and surface subsidence. In this paper, the development process of rock strata arch structure is studied by theoretical analysis and particle flow numerical simulation, and the stability of the arch structure is analyzed. At the same time, based on the rock strata breaking theory, the calculation formulas of the development height and the critical width of the instability of the arch structure are obtained, and the correctness of the formula is verified by numerical simulation. The results show that during the mining stage of the working face, the rock strata arch structure has experienced the process of arching-arch breaking, and the instability of the arch structure is the root cause of increasing surface subsidence damage. The arch structure development height h is the sum of rock strata breaking height Hi and unbroken rock strata arch development height Hig. The theoretical calculation shows that when the width:depth ratio of the working face is 1.60, the height of the arch structure exceeds the bedrock top, which is consistent with the numerical simulation results and verifies the correctness of the formula. By defining the instability coefficient C of rock strata arch structure, a method to judge the stability of the arch structure is provided. The theoretical calculation shows that the critical width L0 of the arch structure instability is 134 m, which is not much different from the numerical simulation results of 136 m, and the correctness of the formula is proved. The research results have particular reference value for preventing ground disasters caused by underground coal mining and controlling ground subsidence and provide a reference for the application of the particle flow method in studying rock strata movement.

Funder

the State Key Laboratory of Water Resource Protection and Utilization in Coal Mining

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference34 articles.

1. Influence mechanism of beam-arch binary structure and strata characteristics on fracture and stress evolution of overlying strata in stope;Lou;J. Min. Saf. Eng.,2021

2. Quantitative Study on the Law of Surface Subsidence Zoning in Steeply Inclined Extra-Thick Coal Seam Mining

3. A study of ground movement in three orthogonal directions due to shallow multi-seam longwall mining;Holla;Coal J.,1992

4. Supports crushing types in the longwall mining of shallows seams;Xu;J. China Coal Soc.,2014

5. Roof pressure of multiple coal seams mining in Yujialiang mine;Huang;J. Xian Univ. Sci. Technol.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3