Mechanics and Stability of Force Chain Arch in Excavated Granular Material

Author:

Wang Meimei1,Zheng Jianwei1ORCID,Xue Shanshan1

Affiliation:

1. Deep Mining and Rock Burst Research Institute, Chinese Institute of Coal Science, Beijing 100013, China

Abstract

Rock and soil masses in geotechnical engineering projects, such as tunnels, mines and slopes, undergo relative motion, exhibiting mechanical characteristics of solid–fluid transition under critical conditions. This work analyzes the characteristics of the solid–fluid transition interface and the mode of load transfer through biaxial compression particle flow photoelastic experiments on granular materials. The study documents that this interface forms an arch shape, marked by a force chain arch. The granular material exhibits two distinct states depending on its position: below the arch, the granular material is in a solid–fluid transitional state, with bearing capacity reduced, while above the arch, it is in a stable solid state, capable of bearing the overlying rock layer’s load. The presence of the force chain arch alters the direction of the originally downward-transferring load, redirecting it along the trajectory of the arch. Analysis of the force and stability of the force chain arch revealed that the arch shape parameters and boundary loads control the instability of the arch. Changes in the overlying and lateral loads lead to different types of instability of the force chain arch. The findings of the study are crucial for underground engineering construction and for the prevention of geological disasters related to granular material.

Funder

Foundation of China Coal Technology and Engineering Group

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3