Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments

Author:

Yang Chaodong,Zhang Xia,Wang Ting,Hu Shuangshuang,Zhou Cunyu,Zhang Jian,Wang QingfengORCID

Abstract

Metasequoia glyptostroboides (Cupressaceae) is a rare deciduous conifer which grows successfully in both aquatic and terrestrial environments. This tree has a narrow natural distribution in central China but is cultivated worldwide. Using histochemical staining and microscopy (both brightfield and epifluorescent), we investigated whether the phenotypic anatomical and histochemical plasticity in the fine adventitious roots of M. glyptostroboides has promoted the adaptation of this plant to aquatic and terrestrial environments. The fine root development and cortex sloughing of M. glyptostroboides occurs later in aquatic habitats than in terrestrial habitats. Anatomical and histochemical analyses have revealed that the apoplastic barriers in the primary growth of the fine roots consist of the endodermis and exodermis with Casparian bands, suberin lamellae, and secondarily lignified cell walls. There were also lignified phi (Φ) thickenings in the cortex. In both aquatic and terrestrial roots, secondary growth was observed in the vascular cambium, which produced secondary xylem and phloem, as well as in the phellogen, which produced cork. As compared to terrestrial adventitious roots, aquatic adventitious roots had multiple lignified Φ thickenings throughout the cortex, larger air spaces, dilated parenchyma, and dense suberin and lignin depositions in the exodermis. Our results thus indicate that phenotypic plasticity in the anatomical features of the fine adventitious roots, including apoplastic barriers, air spaces, and lignified Φ thickenings, might support the adaptation of M. glyptostroboides to both aquatic and terrestrial environments.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3