Molecular-level carbon traits of fine roots: unveiling adaptation and decomposition under flooded conditions

Author:

Wang Mengke,Zhang Peng,Li Huishan,Deng Guisen,Kong Deliang,Kong Sifang,Wang JunjianORCID

Abstract

Abstract. Fine roots are vital for plant development and carbon biogeochemical cycling in terrestrial ecosystems. Flooding is known to regulate the physiology and morphology in plant roots; however, its impact on molecular-level characteristics of carbon compounds (carbon traits) in fine roots remains largely unexplored, which limits our understanding of root adaptation and decomposition under changing environments. Here, we used a sequential extraction method, starting from nonpolar to polar solvents, in order to obtain dichloromethane- and methanol-extractable (FDcMe) fractions, base-hydrolyzable (FKOHhy) fractions, and CuO-oxidizable (FCuOox) fractions from fine roots of Dysoxylum binectariferum, which is naturally grown in soil and water. Subsequently, we characterized them using targeted gas chromatography–mass spectrometry and nontargeted Fourier transform ion cyclotron resonance mass spectrometry. Also, decomposition experiments were conducted on soil- and water-grown roots under aerobic and anoxic conditions. Results showed a consistent increase in the unsaturation degree and aromaticity of the analytes from FDcMe to FCuOox fractions. Both analyses were sufficiently sensitive to show that, compared to soil-grown roots, the water-grown roots developed more polyphenolics with a high unsaturation degree and aromaticity and had more nonstructural compositions. Furthermore, although flooding provided an anoxic condition that slowed down root decomposition, the adaptive strategy of developing more nonstructural labile components in water-grown roots accelerated root decomposition, thereby counteracting the effects of anoxia. This advances our understanding of biogeochemical processes in response to global environmental change.

Funder

National Natural Science Foundation of China

Major Projects of Guangdong Education Department for Foundation Research and Applied Research

Science and Technology Planning Project of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3