Assessment of Genetic Diversity for Drought, Heat and Combined Drought and Heat Stress Tolerance in Early Maturing Maize Landraces

Author:

Nelimor ,Badu-Apraku ,Tetteh ,N’guetta

Abstract

Climate change is expected to aggravate the effects of drought, heat and combined drought and heat stresses. An important step in developing ‘climate smart’ maize varieties is to identify germplasm with good levels of tolerance to the abiotic stresses. The primary objective of this study was to identify landraces with combined high yield potential and desirable secondary traits under drought, heat and combined drought and heat stresses. Thirty-three landraces from Burkina Faso (6), Ghana (6) and Togo (21), and three drought-tolerant populations/varieties from the Maize Improvement Program at the International Institute of Tropical Agriculture were evaluated under three conditions, namely managed drought stress, heat stress and combined drought and heat stress, with optimal growing conditions as control, for two years. The phenotypic and genetic correlations between grain yield of the different treatments were very weak, suggesting the presence of independent genetic control of yield to these stresses. However, grain yield under heat and combined drought and heat stresses were highly and positively correlated, indicating that heat-tolerant genotypes would most likely tolerate combined drought and stress. Yield reduction averaged 46% under managed drought stress, 55% under heat stress, and 66% under combined drought and heat stress, which reflected hypo-additive effect of drought and heat stress on grain yield of the maize accessions. Accession GH-3505 was highly tolerant to drought, while GH-4859 and TZm-1353 were tolerant to the three stresses. These landrace accessions can be invaluable sources of genes/alleles for breeding for adaptation of maize to climate change.

Funder

Bill and Melinda Gates Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3