Potential Effects of Awn Length Variation on Seed Yield and Components, Seed Dispersal and Germination Performance in Siberian Wildrye (Elymus sibiricus L.)

Author:

Ntakirutimana FabriceORCID,Xiao Bowen,Xie Wengang,Zhang Junchao,Zhang Zongyu,Wang Na,Yan Jiajun

Abstract

Awns, needle-like structures formed on the distal of the lemmas in the florets, are of interest because of their essential roles in seed dispersal, germination and photosynthesis. Previous research has reported the potential benefits of awns in major cereal grasses, yet reports on the agronomic and economic implications of awn length variation in forage grasses remain scarce. This study investigated the variation of awn length among 20 Siberian wildrye populations and the effect of awn length on seed yield and yield components. This work then studied the impact of awn length on seed dispersal and germination. The analyses indicated a high level of awn length variation among populations. Awn length showed a significant influence on harvested seed yield per plant (p < 0.05) mostly driven by interactions between awn length and the majority of seed yield components. Principal component analysis clearly revealed that the final impact of awn length on seed yield depends on the balance of its positive and negative effects on traits determining seed yield. Furthermore, awn length tended to increase seed dispersal distance, although little diversity in the nature of this progression was observed in some populations. Awn length exhibited a significant relationship (p < 0.05) with germination percentage. It also tended to shorten germination duration, although this interaction was not statistically significant. Collectively, these results provide vital information for breeding and agronomic programs aiming to maintain yield in grasses. This is the first report to demonstrate in Siberian wildrye the agronomic impacts of awn length variation.

Funder

Fundamental Research Fund for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3