A Decision Process for Optimizing Multi-Hazard Shelter Location Using Global Data

Author:

Godschall SarahORCID,Smith VirginiaORCID,Hubler Jonathan,Kremer PelegORCID

Abstract

Mitigating the effects of natural hazards through infrastructure planning requires integration of diverse types of information from a range of fields, including engineering, geography, social science, and geology. Challenges in data availability and previously siloed data have hindered the ability to obtain the information necessary to support decision making for disaster risk management. This is particularly challenging for areas susceptible to multiple types of natural hazards, especially in low-income communities that lack the resources for data collection. The data revolution is altering this landscape, due to the increased availability of remotely sensed data and global data repositories. This work seeks to leverage these advancements to develop a framework using open global datasets for identifying optimal locations for disaster relief shelters. The goal of this study is to empower low-income regions and make resilience more equitable by providing a multi-hazard shelter planning framework that is accessible to all decision-makers. The tool described integrates spatial multi-criteria decision analysis methods with a network analysis procedure to inform decisions regarding disaster shelter planning and siting.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference66 articles.

1. Shelter Solutions—UNHCR Emergency Handbookhttps://emergency.unhcr.org/entry/254351/shelter-solutions

2. Social Vulnerability to Natural Hazards in Urban Systems. An Application in Santo Domingo (Dominican Republic)

3. Socioeconomic Vulnerability to Disaster Risk: A Case Study of Flood and Drought Impact in a Rural Sri Lankan Community

4. The United Nations Office for Disaster Risk Reduction Sendai Framework for Disaster Risk Reduction,2015

5. The Asian Tsunami: The Implications for Preparedness and Contingency Planning;Twigg,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3