Spatial Mapping for Multi-Hazard Land Management in Sparsely Vegetated Watersheds Using Machine Learning Algorithms

Author:

Bammou Youssef,Benzougagh Brahim,Igmoullan Brahim,Kader Shuraik,Ouallali Abdessalam,Spalevic Velibor,Sestras Paul,Kuriqi Alban

Abstract

AbstractThis study breaks new ground by developing a multi-hazard vulnerability map for the Tensift watershed and the Haouz plain in the Moroccan High Atlas area. The unique juxtaposition of flat and mountainous terrain in this area increases sensitivity to natural hazards, making it an ideal location for this research. Previous extreme events in this region have underscored the urgent need for proactive mitigation strategies, especially as these hazards increasingly intersect with human activities, including agriculture and infrastructure development. In this study six advanced machine learning (ML) models were used to comprehensively assess the combined probability of three significant natural hazards: flooding, gully erosion, and landslides. These models rely on causal factors derived from reputable sources, including geology, topography, meteorology, human activities, and hydrology. The research's rigorous validation process, which includes metrics such as specificity, precision, sensitivity, and accuracy, underlines the robust performance of all six models. The validation process involved comparing the model's predictions with actual hazard occurrences over a specific period. According to the outcomes in terms of the area under curve (AUC), the XGBoost model emerged as the most predictive, with remarkable AUC values of 93.41% for landslides, 91.07% for gully erosion and 93.78% for flooding. Based on the overall findings of this study, a multi-hazard risk map was created using the relationship between flood risk, gully erosion, and landslides in a geographic information system (GIS) architecture. The innovative approach presented in this work, which combined ML algorithms with geographical data, demonstrates the power of these tools in sustainable land management and the protection of communities and their assets in the Moroccan High Atlas and regions with similar topographical, geological, and meteorological conditions that are vulnerable to the aforementioned risks.

Funder

Griffith University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3