Research on Grinding Law and Grinding Parameters Optimization of Polymetallic Complex Ores

Author:

Ma Shaojian,Li Hengjun,Shuai Zhichao,Yang Jinlin,Deng Xingjian,Xu Wenzhe

Abstract

Grinding plays an important role in mining, construction, metallurgy, chemical, coal and other basic industries. In terms of beneficiation, grinding is the most energy consuming operation. So, reasonable grinding conditions according to the properties of ores is the key to obtain good grinding results and reduce energy consumption and resource waste. In this paper, Tongkeng and Gaofeng polymetallic complex ores are taken as research objects, and the effects of grinding law based on single factor condition test and the grinding parameters optimization based on response surface method were studied for two kinds of ores. The results show that grinding time is a significant factor affecting the particle size composition. The suitable grinding concentration of Tongkeng ore and Gaofeng ore is 70% and 75%, respectively. The effect of mill filling ratio on Gaofeng ore is not obvious. The rotational rate has little effect on the grinding technical efficiency. The regression model equations obtained by response surface method are extremely significant, and the relative errors of prediction are all within 1%, indicating high reliability of fitting equations. The order of influencing factors of the two ores is as follows: grinding time > filling ratio > grinding concentration. For Tongkeng ore, the optimized grinding conditions are grinding time 5.4 min, grinding concentration 67% and filling ratio 35%. For Gaofeng ore, the optimized grinding conditions are grinding time 3.8 min, grinding concentration 73% and filling ratio 34%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference35 articles.

1. Influence of impact velocity on fragmentation and the energy efficiency of comminution

2. Effect of Grinding Aids in Cement Grinding

3. Investigation on grinding impact of fly ash particles and its characterization analysis in cement mortar composites

4. Optimization of Stirred Mill Parameters for Fine Grinding of Pge Bearing Chromite Ore;Santosh;Particul. Sci. Tec.,2020

5. Experimental Evaluation of Power Requirements for Wet Grinding and Its Comparison to Dry Grinding;Valenzuela;IEEE T. Ind. Appl.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3