Study on Impact Crushing Characteristics of Minerals Based on Drop Weight Tests

Author:

Ma Shaojian12,Li Hengjun2,Yang Xiaojing2,Xu Wenzhe1,Deng Xingjian1,Yang Jinlin1

Affiliation:

1. Guangxi Higher School Key Laboratory of Minerals Engineering and Materials, College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

2. College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

Abstract

The degree of difficulty in crushing an ore depends on the composition of the ore itself. Due to different types and compositions of ores, the crushing mechanism of ores during the crushing process is also different. In order to quantitatively analyze the impact crushing characteristics of mineral components in ores, this paper takes pure mineral quartz, pyrrhotite, and pyrite as the research objects and uses the universal drop weight impact crushing test equipment and standard test methods developed by the JK Mineral Research Center of the University of Queensland, Australia, to conduct JK drop weight tests on these three pure mineral samples. The results show that the particle size distribution of impact crushing products is wide, covering all particle sizes from “0” to close to the feed particle size, and the yield distribution of each product particle size is relatively uniform. There are critical values and “energy barrier” effects for the impact-specific crushing energy. The impact-specific crushing energy has a significant impact on the particle size composition and crushing effect of the crushing product, and there is an interactive effect between the impact-specific crushing energy and the feed particle size and mineral type. The impact crushing resistance of the sample can be characterized by using Mohs hardness, impact crushing characteristic parameters, impact crushing resistance level, and the yield limit value t10 of the characteristic crushing particle size. The overall characterization results have good consistency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3