The Roof Safety under Large Mining Height Working Face: A Numerical and Theoretical Study

Author:

Wo XiaofangORCID,Li Guichen,Li Jinghua,Yang SenORCID,Lu Zhongcheng,Hao Haoran,Sun YuantianORCID

Abstract

As an important technology of thick coal seam mining, fully mechanized mining with a large mining height has high mining efficiency. In order to study the roof safety control of large mining height working face, the 122106 working face of Caojiatan coal mine is taken as the engineering background. The numerical simulation method is used to analyze the control ability of roof subsidence when the support strength is 1.2 MPa, 1.4 MPa, 1.6 MPa, 1.8 MPa, 2.0 MPa, and 2.2 MPa. The results show that the support strength of hydraulic support is negatively correlated with roof subsidence. Through theoretical analysis of the mechanical model of the support and surrounding rock under the filling condition, it is shown that the height of the gap between the filling body and roof is the main influencing factor of roof subsidence: the smaller the height of the gap between the filling body and roof, the better the control effect on the roof. Through numerical simulation, the roof subsidence and surface subsidence under different filling rates are analyzed. The results show that when the filling rate increases to 80% the control of roof subsidence achieves better results. Taking production safety and economic benefits into consideration, when the reasonable support strength of the working face is determined to be 2.0 MPa and the filling rate is 80%, the safety control of the working face roof can be ensured.

Funder

the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3