Mineralogy and Mineral Chemistry of Dioritic Dykes, Quartz Diorite Enclaves and Pyroxene of the Sungun Cu-Mo Porphyry Deposit, East Azerbaijan, Iran

Author:

Kamali Amin AllahORCID,Moayyed MohsenORCID,Saumur Benoit M.,Fadaeian MohammadORCID

Abstract

The Sungun Cu-Mo porphyry deposit forms part of the Ahar–Arasbaran Magmatic Belt (AAMB). Its host Miocene porphyry stock is quartz monzonitic in composition and is cut by intermediate dykes that post-date mineralization. These dykes contain pyroxene and enclaves of ambiguous origin. Dykes of microdiorite are observed within quartz diorite dykes, whereas later diorite dykes contain three different kinds of enclaves (diorite, quartz diorite and hornfels) of sizes between 1 and 10 cm. Enclaves consist of plagioclase, hornblende and biotite, with accessory sphene, quartz and apatite. Chlorite compositions in microdiorite are within the chamosite range, whereas they are within the clinochlore range in diorite enclaves. Microprobe analyses of pyroxene indicate an augitic composition (Fs13.38-22.79Wo29.1-33.57En48.53-56.61), consistent with an igneous origin. Hornblende of the diorite enclaves formed at pressures ranging between 3 and 5.3 kilobars and temperatures between 714 and 731 °C. Average oxygen fugacity during rock formation is −14.75. Such high oxygen fugacities suggest that the diorite formed near the boundaries of a convergent margin. Amphibole compositions suggest that the diorite enclaves are sub-alkaline to mildly alkaline, consistent with reported whole-rock chemistry of the Sungun magmas. Pyroxenes were formed at pressures ranging between 11 and 15 kilobars (33–45 km) and temperatures between 1100 and 1400 °C. The amount of Fe3+ in clinopyroxene is also consistent with high oxygen fugacity within their environment of crystallization. Overall, these results have implications for our understanding of the origin of the Sungun Cu-Mo porphyry magmas and their mineral deposits in a lower-crustal setting.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3