Post-Mineralization, Cogenetic Magmatism at the Sungun Cu-Mo Porphyry Deposit (Northwest Iran): Protracted Melting and Extraction in an Arc System

Author:

Kamali Amin,Moayyed Mohsen,Amel Nasir,Hosseinzadeh Mohammad,Mohammadiha Kourosh,Santos José,Brenna MarcoORCID

Abstract

The Sungun porphyry ore deposit is located in Eastern Azarbaijan province, Northwestern Iran. The oldest intrusive pulse in the region is a quartz-monzonite pluton, which hosts the porphyry copper-molybdenum mineralization. The Sungun Copper Mine includes the mineralized Sungun porphyry as well as six groups of cross-cutting and lithologically distinct post-mineralization dykes. The composition of these dykes ranges from quartz diorite, gabbro, diorite, dacite, lamprophyre, and microdiorite. Quartz diorite and dacite dykes are the oldest and youngest dykes, respectively. Based on their cross-cutting relationships, the composition of the dykes tend to become more primitive through time. The dykes strike Northwest–Southeast with Southwest dip, sub-parallel to the reverse faults within the deposit area. The lamprophyric dykes range from phonotephrite, to trachybasalt, tephrite, and basanite. The quartz-monzonite porphyry (SP) and the post-mineralization dykes (DK1-DK3) have clear and distinct negative anomalies of Ti, Zr, P, Pr, Ce, and Nb, as well as positive anomalies of Cs, U, K, Pb, and Nd with respect to primitive mantle. Microdioritic dykes (MDI) show depletion of Ti, Nb, P, Ta, Th, Yb, and Zr, and enrichment of Cs, Ba, U, Pb, Nd. The similarities in trace element abundances and patterns in the porphyry and post-mineralization calc-alkaline dykes implies a single source and fractional crystallization as the main mechanism controlling magmatic evolution in a collisional environment. Lamprophyric dykes have enrichment of LREE and LILE and depletion of HREE and HFSE such as Ti, Nb, and Ta. The parent magma of the lamprophyric dykes (LAM) was likely derived by low degrees of melting of a garnet lherzolite mantle peridotite. The 87Sr/86Sr and 143Nd/144Nd ratios range from 0.704617 to 0.706464 and from 0.512648 to 0.512773 for the dykes suggesting that the parental magmas came from a progressively more enriched mantle. Isotope ratios of 87Sr/86Sr and 143Nd/144Nd support a cogenetic relationship of porphyry and calc-alkaline dykes, except for the microdiorite ones. A common primary melt underwent gravity differentiation in a deep magmatic chamber to form a dioritic magma. This subsequently migrated to shallower levels to evolve further and feed individual dyke groups into the Sungun porphyry.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference82 articles.

1. International Geological Map of the Middle East 1:5,000,000;Haghipour,2009

2. Preliminary model of porphyry copper deposits;Berger;US Geol. Surv. Open File Rep.,2008

3. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3