Chemical and Mineralogical Characterization of Montevive Celestine Mineral

Author:

Ariza-Rodríguez NoemiORCID,Rodríguez-Navarro Alejandro B.,Calero de Hoces Mónica,Martin Jose Manuel,Muñoz-Batista Mario J.ORCID

Abstract

The Montevive celestine mineral deposit, set in the Granada Basin in a marine evaporitic uppermost Tortonian–lowermost Messinian sequence, is the largest reserve in Europe of this economically important strontium ore. Currently, the mine has a large amount of tailings resulting from the rejection of a manual dry screening of high-grade celestine mineral. This visual and density screening was carried out in the early days of mining (1954–1973). Concentrating the celestine mineral and increasing the ore recovery rate would reduce mine operation costs and the generation of new tailings, reducing the impact on the environment. In order to define more adequate concentration methods, we have used complementary analytical techniques such as optical (OM) and scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-rays (EDXs), X-ray fluorescence (XRF), and X-ray diffraction (XRD) to fully characterize the morphology, microstructure, chemistry, and mineralogy of the celestine mineral. The low-grade mineral is made of prismatic celestine crystals that are replacing a matrix of micro sparry calcite. Other minority minerals are strontianite, dolomite, quartz, and clays (kaolinite, paragonite, and illite). There is also a certain amount of iron oxides and hydroxides (mainly magnetite) associated with clays. We showed that the concentration of low-grade celestine mineral can be achieved through a low-cost and eco-friendly method based on grinding and size separation. The coarser fractions (>5 mm) have more celestine (up to 12 percent units higher than the starting unprocessed mineral) due to the selective loss of calcite and minority minerals (quartz, clays, and iron oxides) that are mainly found in the finer fraction (<1 mm). This process can make mine exploitation more sustainable, reducing the generation of residues that negatively impact the environment.

Funder

University of Granada

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference44 articles.

1. Introduction to Mineralogy;Nesse,2000

2. Selected Aspects of the Crystal Chemistry of BaSO4, SrSO4 and PbSO4 Selected Aspects of the Crystal Chemistry of BaSO4, SrSO4 and PbSO4;Butler;Ph.D. Thesis,1941

3. Rock-forming Minerals, 5B: Non Silicates;Chang,1996

4. A refinement of the structure barite;Colville;Am. Mineral.,1967

5. An introduction to rock forming minerals. Vols. I-Vby W. A. Deer, R. A. Howie and J. Zussman

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3