Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions

Author:

Ali Asif1,Zhang Ning2ORCID,Santos Rafael M.1ORCID

Affiliation:

1. School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada

2. Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA

Abstract

Scanning electron microscopy (SEM) is a powerful tool in the domains of materials science, mining, and geology owing to its enormous potential to provide unique insight into micro and nanoscale worlds. This comprehensive review discusses the background development of SEM, basic SEM operation, including specimen preparation and image processing, and the fundamental theoretical calculations underlying SEM operation. It provides a foundational understanding for engineers and scientists who have never had a chance to dig in depth into SEM, contributing to their understanding of the workings and development of this robust analytical technique. The present review covers how SEM serves as a crucial tool in mineral characterization, with specific discussion on the workings and research fronts of SEM-EDX, SEM-AM, SEM-MLA, and QEMSCAN. With automation gaining pace in the development of all spheres of technology, understanding the uncertainties in SEM measurements is very important. The constraints in mineral phase identification by EDS spectra and sample preparation are conferred. In the end, future research directions for SEM are analyzed with the possible incorporation of machine learning, deep learning, and artificial intelligence tools to automate the process of mineral identification, quantification, and efficient communication with researchers so that the robustness and objectivity of the analytical process can be improved and the analysis time and involved costs can be reduced. This review also discusses the idea of integrating robotics with SEM to make the equipment portable so that further mineral characterization insight can be gained not only on Earth but also on other terrestrial grounds.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference214 articles.

1. RRUFF (2023, November 20). Minerals Database. Available online: https://rruff.info/.

2. Mineral evolution;Hazen;Am. Miner.,2008

3. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis;Clarkson;Fuel,2012

4. Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir;Yu;Lithol. Reserv.,2015

5. Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications;Cui;Geofluids,2009

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3