Prediction Method for Surface Subsidence of Coal Seam Mining in Loess Donga Based on the Probability Integration Model

Author:

Zhao Bingchao,Guo Yaxin,Mao Xuwei,Zhai Di,Zhu Defu,Huo Yuming,Sun Zedong,Wang Jingbin

Abstract

The accurate prediction of surface subsidence is a significant foundation for the damage assessment of coal seam mining and ecological environment reclamation in loess donga. However, conventional models are very problematic, and the reliability of prediction is usually low. Therefore, we propose a method for predicting surface subsidence of coal seam mining in loess donga that is based on the probability integration model, combined with the movement principle of rock and soil layers in the respective study area, and considering the influence of slope stability and additional mining slip on mining subsidence. The feasibility of our new method was verified by a case study in the N1114 working face of the Ningtiaota coal mine (China) that is situated in an area with abundant loess dongas. The results show that slope slippage is the source of error in the prediction of subsidence in loess donga. The prediction idea of “dividing the surface of loess donga into horizontal strata area and slope sub-area, and predicting the subsidence value of the two areas, respectively” is put forward. A method for predicting the subsidence value of two regions is established. First, based on the theory of probability integral and rock formation movement, the probability integral parameters of the horizontal stratum area are determined, and the subsidence basins in the area are superimposed and calculated. Secondly, according to the slope stability and slip principle, the additional displacement of subsidence in the slope area with mining instability coefficient Gcs > 0.87 is calculated. Finally, combined with the subsidence prediction results of the strata area and the slope sub-area, and the position of the slope, the accurate prediction of the surface subsidence in loess donga is realized. Our results show that the agreement between the curves predicted from our calculations and from the measured data are between 88.7–97.8%. The calculated error of the additional displacement of slope mining slip is between 1.0–9.8%. The excellent correlation between the modelled and measured data documents that our method provides, demonstrated a new efficient and valuable tool for the precise prediction of damages induced by mining of underground coal seams in loess donga.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3