MOTA: Network-Based Multi-Omic Data Integration for Biomarker Discovery

Author:

Fan Ziling,Zhou YuanORCID,Ressom Habtom W.ORCID

Abstract

The recent advancement of omic technologies provides researchers with the possibility to search for disease-associated biomarkers at the system level. The integrative analysis of data from a large number of molecules involved at various layers of the biological system offers a great opportunity to rank disease biomarker candidates. In this paper, we propose MOTA, a network-based method that uses data acquired at multiple layers to rank candidate disease biomarkers. The networks constructed by MOTA allow users to investigate the biological significance of the top-ranked biomarker candidates. We evaluated the performance of MOTA in ranking disease-associated molecules from three sets of multi-omic data representing three cohorts of hepatocellular carcinoma (HCC) cases and controls with liver cirrhosis. The results demonstrate that MOTA allows the identification of more top-ranked metabolite biomarker candidates that are shared by two different cohorts compared to traditional statistical methods. Moreover, the mRNA candidates top-ranked by MOTA comprise more cancer driver genes compared to those ranked by traditional differential expression methods.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3