Chronic Immune Platelet Activation Is Followed by Platelet Refractoriness and Impaired Contractility

Author:

Andrianova Izabella A.,Khabirova Alina I.,Ponomareva Anastasia A.,Peshkova Alina D.ORCID,Evtugina Natalia G.,Le Minh Giang,Sibgatullin Timur B.,Weisel John W.,Litvinov Rustem I.ORCID

Abstract

Autoimmune diseases, including systemic lupus erythematosus (SLE), have a high risk of thrombotic and hemorrhagic complications associated with altered platelet functionality. We studied platelets from the blood of SLE patients and their reactivity. The surface expression of phosphatidylserine, P-selectin, and active integrin αIIbβ3 were measured using flow cytometry before and after platelet stimulation. Soluble P-selectin was measured in plasma. The kinetics of platelet-driven clot contraction was studied, as well as scanning and transmission electron microscopy of unstimulated platelets. Elevated levels of membrane-associated phosphatidylserine and platelet-attached and soluble P-selectin correlated directly with the titers of IgG, anti-dsDNA-antibodies, and circulating immune complexes. Morphologically, platelets in SLE lost their resting discoid shape, formed membrane protrusions and aggregates, and had a rough plasma membrane. The signs of platelet activation were associated paradoxically with reduced reactivity to a physiological stimulus and impaired contractility that revealed platelet exhaustion and refractoriness. Platelet activation has multiple pro-coagulant effects, and the inability to fully contract (retract) blood clots can be either a hemorrhagic or pro-thrombotic mechanism related to altered clot permeability, sensitivity of clots to fibrinolysis, obstructiveness, and embologenicity. Therefore, chronic immune platelet activation followed by secondary platelet dysfunction comprise an understudied pathogenic mechanism that supports hemostatic disorders in autoimmune diseases, such as SLE.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3