Blocking of SGLT2 to Eliminate NADPH-Induced Oxidative Stress in Lenses of Animals with Fructose-Induced Diabetes Mellitus

Author:

Chen Ying-Ying,Wu Tsung-Tien,Ho Chiu-Yi,Yeh Tung-Chen,Sun Gwo-ChingORCID,Tseng Ching-Jiunn,Cheng Pei-WenORCID

Abstract

Chronic hyperglycemia triggers an abnormal rise in reactive oxygen species (ROS) that leads to blindness in patients with diabetes mellitus (DM) and cataracts. In this study, the effects of dapagliflozin, metformin and resveratrol on ROS production were investigated in lens epithelial cells (LECs) of animals with fructose-induced DM. LECs were isolated from patients without DM, or with DM devoid of diabetic retinopathy. Animals were treated with 10% fructose for 8 weeks to induce DM, which was verified by monitoring blood pressure and serum parameters. For drug treatments, 1.2 mg/day of dapagliflozin was given for 2 weeks, 500 mg/kg/day of metformin was given, and 10 mg/kg/day of resveratrol was given. Dihydroethidium was used to stain endogenous O2˙− production in vivo of the LECs. Superoxide production was expressed in the cataract of DM, or patients without DM. Sodium–glucose cotransporter 2 (SGLT2), glucose transporter 1 (GLUT1), GLUT5, the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47/p67-phox, NOX4 and RAGE were significantly increased in LECs with DM. In addition, the dapagliflozin treatment reduced GLUT5, p47/p67-phox, NADPH oxidase 4 (NOX4) and receptor for advanced glycation end products (RAGE) expressions. On the contrary, metformin or resveratrol inhibited p47-phox, GLUT5, and SGLT2 expressions, but not nuclear factor erythroid 2–related factor 2 (NRF2). In summary, dapagliflozin, metformin or resveratrol down-regulated p47-phox expression through SGLT2 inactivation and ROS reduction. These important findings imply that SGLT2 can be blocked to ameliorate oxidative stress in the cataracts of DM patients.

Funder

Kaohsiung Veterans General Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3