LRF Promotes Indirectly Advantageous Chromatin Conformation via BGLT3-lncRNA Expression and Switch from Fetal to Adult Hemoglobin

Author:

Chondrou Vasiliki,Shaukat Athanasios-NasirORCID,Psarias GeorgiosORCID,Athanasopoulou Katerina,Iliopoulou Evanthia,Damanaki Ariadne,Stathopoulos ConstantinosORCID,Sgourou Argyro

Abstract

The hemoglobin switch from fetal (HbF) to adult (HbA) has been studied intensively as an essential model for gene expression regulation, but also as a beneficial therapeutic approach for β-hemoglobinopathies, towards the objective of reactivating HbF. The transcription factor LRF (Leukemia/lymphoma-related), encoded from the ZBTB7A gene has been implicated in fetal hemoglobin silencing, though has a wide range of functions that have not been fully clarified. We thus established the LRF/ZBTB7A-overexpressing and ZBTB7A-knockdown K562 (human erythroleukemia cell line) clones to assess fetal vs. adult hemoglobin production pre- and post-induction. Transgenic K562 clones were further developed and studied under the influence of epigenetic chromatin regulators, such as DNA methyl transferase 3 (DNMT3) and Histone Deacetylase 1 (HDAC1), to evaluate LRF’s potential disturbance upon the aberrant epigenetic background and provide valuable information of the preferable epigenetic frame, in which LRF unfolds its action on the β-type globin’s expression. The ChIP-seq analysis demonstrated that LRF binds to γ-globin genes (HBG2/1) and apparently associates BCL11A for their silencing, but also during erythropoiesis induction, LRF binds the BGLT3 gene, promoting BGLT3-lncRNA production through the γ-δ intergenic region of β-type globin’s locus, triggering the transcriptional events from γ- to β-globin switch. Our findings are supported by an up-to-date looping model, which highlights chromatin alterations during erythropoiesis at late stages of gestation, to establish an “open” chromatin conformation across the γ-δ intergenic region and accomplish β-globin expression and hemoglobin switch.

Funder

ELKE_EAP

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3