Effects of Shading Nets Color on the Internal Environmental Conditions, Light Spectral Distribution, and Strawberry Growth and Yield in Greenhouses

Author:

Alhelal Ibrahim M.1ORCID,Albadawi Ammar A.1,Alsadon Abdullah A.2ORCID,Alenazi Mekhled M.2,Ibrahim Abdullah A.2,Shady Mohamed1ORCID,Al-Dubai Abdulhakim A.2

Affiliation:

1. Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

2. Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

Greenhouses are used to create the appropriate environment for plant growth. Controlling the level of lighting using shading nets is one of the most commonly used methods for making suitable environmental modifications in greenhouses. The objective of this study was to examine the impact of three colored shading nets (green, black, and beige at shading rates of 50%) on inside air temperature, relative humidity, and spectral distribution of light in a greenhouse, as well as their effect on the growth and yield of strawberry plants. Data were collected during winter (December and January) and spring (March and April) months from shaded and unshaded blocks. The green net had the highest transmittance to solar radiation (τSR) during the two periods (38% and 35%, respectively) and the highest transmittance to photosynthetically active radiation (τPAR) of 34% during spring months, while the beige net had the highest τPAR of 27% during winter months. The black net had the smallest τPAR values during the two periods (22% and 29%, respectively). The lowest total light levels per season for solar radiation (SR) and photosynthetically active radiation (PAR) (746.8 and 293.7 MJ·m−2, respectively) were obtained under the black net, compared with (906.7 and 320.8 MJ·m−2, respectively) for the beige net, and (969.6 and 337.2 MJ·m−2, respectively) for the green net. The ratio of PAR to SR (PAR:SR) was 41% and 44% outside and inside the greenhouse for the control (without shade), respectively. The black net had the highest ratio of PAR:SR (39%) among the treatment nets. The green net transmitted more light in the blue–green region (400 to 570 nm) and transmitted the highest photon flux at 480 nm, while the beige net increased the infrared radiation flux from 730 nm and above and transmitted the highest photon flux at 604 nm. The study found that the green net increased the ratio of blue to red light (B/R), while the beige and green nets reduced the red to far-red light (R/FR) ratio. The photosynthetic rate, conductance to water, and transpiration were significantly higher for strawberries grown under the beige net. These results indicate that the beige net positively influenced leaf and stem characteristics, leading to improved strawberry yields. The best yields of strawberries were obtained under the beige net and the control group (no shade), surpassing the yields achieved under the black net by 26.3% and 21.4%, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3