Appropriate Drought Training Induces Optimal Drought Tolerance by Inducing Stepwise H2O2 Homeostasis in Soybean

Author:

Shen Yuqian1,Li Lei1,Du Peng1,Xing Xinghua2ORCID,Gu Zhiwei1,Yu Zhiming1,Tao Yujia1,Jiang Haidong1ORCID

Affiliation:

1. Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China

2. Xuzhou Institute of Agricultural Sciences of Xu-Huai Region of Jiangsu, Xuzhou 221131, China

Abstract

Soybean is considered one of the most drought-sensitive crops, and ROS homeostasis can regulate drought tolerance in these plants. Understanding the mechanism of H2O2 homeostasis and its regulatory effect on drought stress is important for improving drought tolerance in soybean. We used different concentrations of polyethylene glycol (PEG) solutions to simulate the progression from weak drought stress (0.2%, 0.5%, and 1% PEG) to strong drought stress (5% PEG). We investigated the responses of the soybean plant phenotype, ROS level, injury severity, antioxidant system, etc., to different weak drought stresses and subsequent strong drought stresses. The results show that drought-treated plants accumulated H2O2 for signaling and exhibited drought tolerance under the following stronger drought stress, among which the 0.5% PEG treatment had the greatest effect. Under the optimal treatment, there was qualitatively describable H2O2 homeostasis, characterized by a consistent increasing amplitude in H2O2 content compared with CK. The H2O2 signal formed under the optimum treatment induced the capacity of the antioxidant system to remove excess H2O2 to form a primary H2O2 homeostasis. The primary H2O2 homeostasis further induced senior H2O2 homeostasis under the following strong drought and maximized the improvement of drought tolerance. These findings might suggest that gradual drought training could result in stepwise H2O2 homeostasis to continuously improve drought tolerance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3