Study of CaDreb2c and CaDreb2h Gene Sequences and Expression in Chickpea (Cicer arietinum L.) Cultivars Growing in Northern Kazakhstan under Drought

Author:

Kiselev Konstantin V.1,Ogneva Zlata V.1ORCID,Dubrovina Alexandra S.1ORCID,Gabdola Ademi Zh.2ORCID,Khassanova Gulmira Zh.23ORCID,Jatayev Satyvaldy A.2

Affiliation:

1. Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia

2. Faculty of Agronomy, S. Seifullin Kazakh Agro Technical Research University, Astana 010000, Kazakhstan

3. A.I. Barayev Research and Production Centre of Grain Farming, Shortandy 021600, Kazakhstan

Abstract

Drought poses a significant challenge to plant growth and productivity, particularly in arid regions like northern Kazakhstan. Dehydration-responsive element-binding (DREB) transcription factors play an important role in plant response to drought and other abiotic stresses. In Arabidopsis thaliana, the DREB subfamily consists of six groups, designated DREB1 to DREB6. Among these, DREB2 is primarily associated with drought and salinity tolerance. In the chickpea genome, two DREB genes, CaDREB2c and CaDREB2h, have been identified, exhibiting high sequence similarity to Arabidopsis DREB2 genes. We investigated the nucleotide sequences of CaDREB2c and CaDREB2h genes in several chickpea cultivars commonly grown in northern Kazakhstan. Interestingly, the CaDREB2h gene sequence was identical across all varieties and corresponded to the sequence deposited in the GenBank. However, the CaDREB2c gene sequence exhibited variations among the studied varieties, categorized into three groups: the first group (I), comprising 20 cultivars, contained a CaDREB2c gene sequence identical to the GenBank (Indian cultivar CDC Frontier). The second group (II), consisting of 4 cultivars, had a single synonymous substitution (T to C) compared to the deposited CaDREB2c gene sequence. The third group, encompassing 5 cultivars, displayed one synonymous substitution (C to T) and two non-synonymous substitutions (G to T and G to A). Furthermore, we assessed the gene expression patterns of CaDREB2c and CaDREB2h in different chickpea varieties under drought conditions. Chickpea cultivars 8 (III), 37 (I), 6 (III), and 43 (I) exhibited the highest drought resistance. Our analysis revealed a strong positive correlation between drought resistance and CaDREB2h gene expression under drought stress. Our findings suggest that the chickpea’s adaptive responses to water deprivation are associated with changes in CaDREB2 gene expression. To further elucidate the mechanisms underlying drought tolerance, we propose future research directions that will delve into the molecular interactions and downstream targets of CaDREB2 genes.

Funder

Science Committee of the Ministry of Science and Higher Education, Republic of Kazakhstan

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3