Functional Characterization of CsF3Ha and Its Promoter in Response to Visible Light and Plant Growth Regulators in the Tea Plant

Author:

Bai Yan1,Zou Rui2,Zhang Hongye1,Li Jiaying1,Wu Tian1ORCID

Affiliation:

1. School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China

2. Qiannan Academy of Agricultural Sciences, Duyun 558000, China

Abstract

Flavanone 3-hydroxylase (F3H) catalyzes trihydroxyflavanone formation into dihydroflavonols in the anthocyanin biosynthesis pathway, serving as precursors for anthocyanin synthesis. To investigate the CsF3Ha promoter’s regulation in the ‘Zijuan’ tea plant, we cloned the CsF3Ha gene from this plant. It was up-regulated under various visible light conditions (blue, red, and ultraviolet (UV)) and using plant growth regulators (PGRs), including abscisic acid (ABA), gibberellic acid (GA3), salicylic acid (SA), ethephon, and methyl jasmonate (MeJA). The 1691 bp promoter sequence was cloned. The full-length promoter P1 (1691 bp) and its two deletion derivatives, P2 (890 bp) and P3 (467 bp), were fused with the β-glucuronidase (GUS) reporter gene, and were introduced into tobacco via Agrobacterium-mediated transformation. GUS staining, activity analysis, and relative expression showed that visible light and PGRs responded to promoter fragments. The anthocyanin content analysis revealed a significant increase due to visible light and PGRs. These findings suggest that diverse treatments indirectly enhance anthocyanin accumulation in ‘Zijuan’ tea plant leaves, establishing a foundation for further research on CsF3Ha promoter activity and its regulatory role in anthocyanin accumulation.

Funder

Joint Special Project of Yunnan Province for Agricultural Basic Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3