Allelopathy and Identification of Volatile Components from the Roots and Aerial Parts of Astragalus mongholicus Bunge

Author:

Wang Xiu1,Liu Yaqi1,Peng Na1,Yu Haitao1,Ma Yu1,Zhang Mingxin1,Wang Yaoyao1,Wang Yi1,Gao Weiwei1

Affiliation:

1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China

Abstract

The volatile compounds produced by plants play an important role in plant growth, plant communication, and resistance to biological and abiotic stresses. Astragalus membranaceus var. mongholicus (AM) is a perennial herbaceous plant (Leguminosae) that is widely cultivated in northwest China. The bioactive compounds in its root have shown various pharmacological activities. Root rot disease caused by Fusarium spp. often occurs in AM planting with increasing severity in continuous monoculture. It is currently still unclear what are the effects of the volatile compounds produced by fresh AM on itself, other crops cultivated on the same field after AM, pathogen, and rhizobia. In this study, we found that seed germination and seedling growth of AM, lettuce (Lactuca sativa L.), and wheat (Triticum aestivum L.) could be affected if they were in an enclosed space with fresh AM tissue. Additionally, 90 volatile compounds were identified by SPME-GC-MS from whole AM plant during the vegetative growth, 36 of which were specific to aerial parts of AM (stems and leaves, AMA), 17 to roots (AMR), and 37 were found in both AMA and AMR. To further identify the allelopathic effects of these volatile compounds, five compounds (1-hexanol, (E)-2-hexenal, (E,E)-2,4-decadienal, hexanal, and eugenol) with relatively high content in AM were tested on three receptor plants and two microorganisms. We found that (E,E)-2,4-decadienal and (E)-2-hexenal showed significant inhibitory effects on the growth of AM and lettuce. One-hexanol and hexanal suppressed the growth of wheat, while eugenol showed a similar effect on all three plant species. Moreover, the activities of these compounds were dose dependent. Notably, we discovered that (E)-2-hexenal and eugenol also inhibited the growth of the pathogen Fusarium solani by as high as 100%. Meanwhile, all five compounds tested suppressed the rhizobia Sinorhizobium fredii. In summary, this study furthered our understanding of the comprehensive allelopathic effects of the main volatile components of AM.

Funder

National Key Research and Development Program of China

CAMS Innovation Fund for Medical Sciences

Hohhot Science and Technology Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3