Unraveling the Mechanism of Cork Spot-like Physiological Disorders in ‘Kurenainoyume’ Apples Based on Occurrence Location

Author:

Imura Eichi12ORCID,Nakagomi Mitsuho1ORCID,Hayashida Taishi3,Fujita Tomomichi3ORCID,Sato Saki3ORCID,Matsumoto Kazuhiro1ORCID

Affiliation:

1. Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Shizuoka, Japan

2. Apple Research Institute, Aomori Prefectural Industrial Technology Research Center, Kuroishi 036-0332, Aomori, Japan

3. Fujisaki Farm, Faculty of Agriculture and Life Science, Hirosaki University, Fujisaki 038-3802, Aomori, Japan

Abstract

Cork spot-like physiological disorder (CSPD) is a newly identified issue in ‘Kurenainoyume’ apples, yet its mechanism remains unclear. To investigate CSPD, we conducted morphological observations on ‘Kurenainoyume’ apples with and without pre-harvest fruit-bagging treatment using light-impermeable paper bags. Non-bagged fruit developed CSPD in mid-August, while no CSPD symptoms were observed in bagged fruit. The bagging treatment significantly reduced the proportion of opened lenticels, with only 17.9% in bagged fruit compared to 52.0% in non-bagged fruits. In non-bagged fruit, CSPD spots tended to increase from the lenticels, growing in size during fruit development. The cuticular thickness and cross-sectional area of fresh cells in CSPD spots were approximately 16 µm and 1600 µm², respectively. Healthy non-bagged fruit reached these values around 100 to 115 days after full bloom from mid- to late August. Microscopic and computerized tomography scanning observations revealed that many CSPD spots developed at the tips of vascular bundles. Therefore, CSPD initiation between opened lenticels and vascular bundle tips may be influenced by water stress, which is potentially caused by water loss, leading to cell death and the formation of CSPD spots.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3