Rapeseed Flower Counting Method Based on GhP2-YOLO and StrongSORT Algorithm

Author:

Wang Nan1,Cao Haijuan1,Huang Xia1,Ding Mingquan1

Affiliation:

1. The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China

Abstract

Accurately quantifying flora and their respective anatomical structures within natural ecosystems is paramount for both botanical breeders and agricultural cultivators. For breeders, precise plant enumeration during the flowering phase is instrumental in discriminating genotypes exhibiting heightened flowering frequencies, while for growers, such data inform potential crop rotation strategies. Moreover, the quantification of specific plant components, such as flowers, can offer prognostic insights into the potential yield variances among different genotypes, thereby facilitating informed decisions pertaining to production levels. The overarching aim of the present investigation is to explore the capabilities of a neural network termed GhP2-YOLO, predicated on advanced deep learning techniques and multi-target tracking algorithms, specifically tailored for the enumeration of rapeseed flower buds and blossoms from recorded video frames. Building upon the foundation of the renowned object detection model YOLO v8, this network integrates a specialized P2 detection head and the Ghost module to augment the model’s capacity for detecting diminutive targets with lower resolutions. This modification not only renders the model more adept at target identification but also renders it more lightweight and less computationally intensive. The optimal iteration of GhP2-YOLOm demonstrated exceptional accuracy in quantifying rapeseed flower samples, showcasing an impressive mean average precision at 50% intersection over union metric surpassing 95%. Leveraging the virtues of StrongSORT, the subsequent tracking of rapeseed flower buds and blossom patterns within the video dataset was adeptly realized. By selecting 20 video segments for comparative analysis between manual and automated counts of rapeseed flowers, buds, and the overall target count, a robust correlation was evidenced, with R-squared coefficients measuring 0.9719, 0.986, and 0.9753, respectively. Conclusively, a user-friendly “Rapeseed flower detection” system was developed utilizing a GUI and PyQt5 interface, facilitating the visualization of rapeseed flowers and buds. This system holds promising utility in field surveillance apparatus, enabling agriculturalists to monitor the developmental progress of rapeseed flowers in real time. This innovative study introduces automated tracking and tallying methodologies within video footage, positioning deep convolutional neural networks and multi-target tracking protocols as invaluable assets in the realms of botanical research and agricultural administration.

Funder

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3